

C.P. 16 – 162, 062510 – BUCUREŞTI tel. 021.4113617, fax 021.4114280

e-mail. office@matrixrom.ro, www.matrixrom.ro

Global Ecoinformatics. Theory and Applications

Preface

List of abbreviations and acronyms

Chapter 1. Globalization and problems of sustainable development

- 1.1. Introduction
- 1.2. Trends in civilization development
- 1.3. Sustainable development problems
- 1.4. Global ecodynamics priorities
- 1.5. Global dynamics of ecosystems: Natural and anthropogenic impacts
- 1.6. Present global ecodynamics
- 1.7. Global energetics development in the context of global ecodynamics
- 1.8. Conclusion. Unsolved problems

Chapter 2. New information technology for environmental monitoring

- 2.1. New concept of geoinformation monitoring technology
- 2.2. Principal aspects of the GIMS technology
- 2.3. The GIMS structure
- 2.4. The GIMS-based research remote sensing platforms
- 2.5. Spectroellipsometric tools for the water quality diagnostics in the Sea of Okhotsk
- 2.6. A modeling system for monitoring water quality in lagoons
- 2.7. Remote-sensing tools and ecoinformatics

- 2.8. Microwave radiometry in remote monitoring of the ocean
- 2.9. Typical inverse task of microwave radiometry
- 2.10. Conclusions

Chapter 3. The NSS model as the GIMS component

- 3.1. The problem of global modelling
- 3.2. Global model and GIMS
- 3.3. The NSS global modelling
- 3.4. Climate unit of the global model

Chapter 4. Natural disasters as components of global ecodynamics

- 4.1. Evolution of the biosphere and natural disasters
- 4.2. Wildfires as a component of global ecodynamics
- 4.3. Thunderstorms as a component of global ecodynamics

Chapter 5. The role of biogeochemical cycles in global ecodynamics

- 5.1. Biogeochemical cycles and quality of life
- 5.2. Biological, chemical, and physical indicators for the quality of biogeochemical cycles
- 5.3. The role of living processes in the biogeochemical cycles
- 5.4. Simulation results from a coupled model of carbon dioxide and methane global cycles

Chapter 6. Ecoinformatics and soil-plant formations

- 6.1. Methodology, theory and problems
- 6.2. Global dynamics of the land ecosystems
- 6.3. Modeling the vegetation dynamics
- 6.4. The role of forests in CO2 cycle
- 6.5. Vegetation media as a tool in the study of attenuation of electromagnetic Waves

6.	6.	Microwave	model	of	vegetation	cover

6.7. Land cover classifications

Chapter 7. Ocean environment and global ecodynamics

- 7.1. Arctic Basin pollution problems
- 7.2. High-latitude environment science
- 7.3. Simulation model of the Arctic Basin ecosystem
- 7.4. An expert system for the Okhotsk Sea investigation
- 7.5. Arctic biocomplexity
- 7.6. Ecoinformatics problems of the ocean
- 7.7. Estimation of oil hydrocarbon pollution parameters in sea water
- 7.8. Monitoring of the oil and gas extraction zone in south-China sea
- 7.9 Adaptive technologies and sea navigation

Chapter 8. Decision making risks in global ecodynamics

- 8.1. Risk control and sustainable development
- 8.2. Indicators of the efficiency of risk control in cases of natural disasters
- 8.3. Social and human dimensions of risk
- 8.4. Estimation of risk in the monitoring regime
- 8.5. Decision making scenario for the Aral-Caspian hydrological system renewal
- 8.6. Decision making risks in tropical cyclogenesis

References

Index